Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
2.
Nature ; 605(7911): 640-652, 2022 05.
Article in English | MEDLINE | ID: covidwho-1773987

ABSTRACT

The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Biological Evolution , COVID-19 Vaccines , Humans , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemics/prevention & control , Pharmacogenomic Variants , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , United States/epidemiology , Virulence
3.
Appl Biosaf ; 27(2): 58-63, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1722150

ABSTRACT

Background: The Animal Biosafety Level 3 Enhanced (ABSL-3+) laboratory at St. Jude Children's Research Hospital has a long history of influenza pandemic preparedness. The emergence of SARS-CoV-2 and subsequent expansion into a pandemic has put new and unanticipated demands on laboratory operations since April 2020. Administrative changes, investigative methods requiring increased demand for inactivation and validation of sample removal, and the adoption of a new animal model into the space required all arms of our Biorisk Management System (BMS) to respond with speed and innovation. Results: In this report, we describe the outcomes of three major operational changes that were implemented to adapt the ABSL-3+ select agent space into a multipathogen laboratory. First were administrative controls that were revised and developed with new Institutional Biosafety Committee protocols, laboratory space segregation, training of staff, and occupational health changes for potential exposure to SARS-CoV-2 inside the laboratory. Second were extensive inactivation and validation experiments performed for both highly pathogenic avian influenza and SARS-CoV-2 to meet the demands for sample removal to a lower biosafety level. Third was the establishment of a new caging system to house Syrian Golden hamsters for SARS-CoV-2 risk assessment modeling. Summary: The demands placed on biocontainment laboratories for response to SARS-CoV-2 has highlighted the importance of a robust BMS. In a relatively short time, the ABSL-3+ was able to adapt from a single select agent space to a multipathogen laboratory and expand our pandemic response capacity.

4.
Nature ; 603(7902): 687-692, 2022 03.
Article in English | MEDLINE | ID: covidwho-1641974

ABSTRACT

The recent emergence of B.1.1.529, the Omicron variant1,2, has raised concerns of escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in preclinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of several B.1.1.529 isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. Despite modelling data indicating that B.1.1.529 spike can bind more avidly to mouse ACE2 (refs. 3,4), we observed less infection by B.1.1.529 in 129, C57BL/6, BALB/c and K18-hACE2 transgenic mice than by previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease and pathology with B.1.1.529 were also milder than with historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from the SAVE/NIAID network with several B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


Subject(s)
COVID-19/pathology , COVID-19/virology , Disease Models, Animal , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cricetinae , Female , Humans , Lung/pathology , Lung/virology , Male , Mesocricetus , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL